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of China 

Received 13 May 1992 

Abstract. A path integral formulation in the representation of coherent states for the 
quantum group SU,(2) is introduced. An expression for the transition amplitude connecting 
two SU,(2) coherent states is construcfed, and the corresponding canonical equations of 
motion are also derived. 

Both path integral [l]  and coherent states [Z, 31 have played major roles in the study 
of quantum mechanical systems, particularly for establishing the correspondence 
between classical and quantum physics. The use of coherent states to provide an 
altemative method of obtaining the phase space path integral and Hamilton's equations 
of motion was pioneered by Klauder [4]. This technique has recently been extended 
to include a formulation in terms of generalized coherent states for SU( 1 , l )  [ 5 ] ,  SU(2) 
[6] and Osp(l/Z, R) [7]. More recently, quantum algebras or quantum groups, which 
may be viewed as deformations of classical Lie algebras or groups, have begun to be 
investigated [8,9], and the coherent states for the quantum group SU,(Z) are also 
defined [lo, 111. Furthermore, in [U, 131, the mathematical properties of these q. 
coherent states, the supercoherent states, path integrals and their semiclassical limit 
are discussed. In this letter, we shall extend the previous path integral formalism of 
coherent states to the quantum group SU,(2). We introduce the normalized SU,(2) 
coherent states instead of the unnormalized ones in [ll],  and construct an invariant 
measure of integration for the normalized coherent states. Later, we present the path 
integral formulation of the transition amplitude between two SUJ2) coherent states 
and derive the classical equations of motion for the system. 

Let us conside: the quantum group SU,(2), which is generated algebraically by 
L'lC upcrarurs J+, J -  (IU" J O  ""cyrrlg L'LC ZCI*.LI"IIL. 
.L^ r r ^_-I r -L-..:-- *I_^ --,-.:..-- 

where q is a real number. The SU,(Z) unitary irreps [8] are characterized by j, which 
may take the values 0, f ,  I , ; , .  . . , and their carrier space is spanned by 2j+ 1 vectors 
(I j, m),  m = -j, - j+  1,. . . , j} such that 

jdi, m )  = m Ij, m )  

j+lj, m )  = ([jF m ] [ j *  m + ~l)'''Ij, m * 1). 
(2) 
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The SU,(2) coherent states 1r)'for a given irrep j can be defined in terms of a 
q-exponential as 

Iz)= ~ ( a ;  g)eu(z.f+)Ij, -j) 

Hereafter the overbar stands for the complex conjugation. The normalization constant 
Nj(h; q )  - is given by 

Furthermore, the scalar product of SU,(2) coherent states may be expressed as 

(z1lz2)= Y ( P , z , ;  f l )4( i2zz;_q)N;2(~lz2;  9).  ( 5 )  

There exists another form for the normalization constant A',(%; 4): - 

21 
N,:2(zz; q )  = n (1 + zzgk-J-'/2 ). (6 )  

k = l  

It is easy to verify that formulae (4) and (6) are equivalent by means of mathematical 
induction. The decomposition of unity for SU,(2) coherent states and the measure of 
integration, which differs from that of [I l l  because the coherent states are normalized 
to unity, can be written as 

. )-'(I + i i q j + l / 2 ) - '  - d,,lzl2 do. (8) 

Note that the normal integration d0  goes from 0 to 277, while the q-integration d&I2 
goes from 0 to  m. In the derivation, use is made of a q-analogue of the beta integration, 
which, for x, y E N, can be written as [ 1 I ]  

[2j + 11 ( + izq-j-l/2 du(  z )  = - 
2%. 

ket us consider a Hamiltoniafl I?, which is constructed from the infinitesimal operators 
r ^_.I 5 .̂-.a,, I*\ e:--- U ~ .L̂  *.._ .̂._ I.-- 2 ..,_ l...*e..c*n-"-"":.4a.. 

J* till" JO U1 "Uq(',. D1I1L.C n c."IIs=IYci~ LLIC: q"l"'u"' IIUILIYC. J ,  w c  L I C L C L l l L C l  *"..>I"CI 

only the states with fixed j. The transition amplitude from the coherent state Izo) at 
time f o  to the coherent state 12') at time f' is given by 

As usual, we divide the time interval AT = f ' -  ro into n equal parts E = AT/n and take 
the limit n + 00 
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Inserting the decomposition of unity of (7) into each time interval of ( 1 1 )  leads to the 
expression 

where z. = 2’. The term in the curly bracket in (12) is the simplest to handle, and to 
first order in E it can be replaced by the exponential of the expectation value of the 
Hamiltonian. Next, by using the identity (zk I zk-J = exp(ln(zk I zk-,)) and the explicit 
form of the scalar product (i.e. equations ( 5 )  and (6)) the factor for the scalar products 
of the coherent states is expressed as 

where the dot denotes the time derivative and Azk = zk - zk-, . 
The transition amplitude can then be written in the following formal manner: 

~ = ~ , ~ , ( z ( t ) , z ( t ) , i ( l ) , ~ ( t ) ) d t  

where S is the action and the ‘Lagrangian’ 2 is given by 

x=czIAlz) 
which can be rewritten as 

with the aid of 
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To arrive at the classical limit, we consider the case S >> h. The main contribution 
to the transition amplitude T then comes from the path which makes the action 
stationary with fixed endpoint conditions z,,= z(to) ,  z '= z( t ' ) :  

As the variations Sz and S i  are independent and arbitrary, we obtain 

Using the expression (15) for 2, we cast equation (19) into the 'canonical' form as 

Now we define the Poisson bracket by 

for arbitrary functions A and B of z and i. As is easily verified, this bracket satisfies 
the antisymmetricity and Jacobi's identity. Then equation (20) is brought into the form 

i = ( z , B e )  i = {i, X ) .  (22) 

z=tan  (:) - e -irp 

Alternatively, using the angle variables (0, Q)  through stereographic projection 

( 0 s  0 <  T, 0s Q <2T) (23) 

we can rewrite equation (20) as 

e={e,x) $={Q,W 
where the Poisson bracket is given by 

(24) 

Finally, we wish to point out that all the results in this letter are identical with 
those in [6 ] ,  i.e. in the case of SU(2), as q+ 1.  This is just what we want. 
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